Nonseparating trees in 2-connected graphs and oriented trees in strongly connected digraphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On spectral radius of strongly connected digraphs

 It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.  

متن کامل

Nonseparating Planar Chains in 4-Connected Graphs

In this paper, we describe an O(|V (G)|) algorithm for finding a “non-separating planar chain” in a 4-connected graph G, which will be used to decompose an arbitrary 4-connected graph into “planar chains”. This work was motivated by the study of a multi-tree approach to reliability in distributed networks, as well as the study of non-separating induced paths in highly connected graphs. Supporte...

متن کامل

Strongly Connected Multivariate Digraphs

Generalizing the idea of viewing a digraph as a model of a linear map, we suggest a multi-variable analogue of a digraph, called a hydra, as a model of a multi-linear map. Walks in digraphs correspond to usual matrix multiplication while walks in hydras correspond to the tensor multiplication introduced by Robert Grone in 1987. By viewing matrix multiplication as a special case of this tensor m...

متن کامل

Non-separating trees in connected graphs

Let T be any tree of order d ≥ 1. We prove that every connected graph G with minimum degree d contains a subtree T ′ isomorphic to T such that G − V (T ) is connected.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2019

ISSN: 0012-365X

DOI: 10.1016/j.disc.2018.10.001